Integral from 0 -> (sqrt 2) / 2
( x^2 / sqrt(1-x^2) ) dx
( x^2 / sqrt(1-x^2) ) dx
-
∫x²/√(1 - x²) dx from 0 to √2/2
Substitute x = sin(t):
∫sin²(t)*cos(t)/cos(t) dt from 0 to pi/4
1/2*∫(1 - cos(2t)) dt from 0 to pi/4
1/2*[t - sin(t)*cos(t) eval. from 0 to pi/4]
1/2*[pi/4 - 1/2] = pi/8 - 1/4
Substitute x = sin(t):
∫sin²(t)*cos(t)/cos(t) dt from 0 to pi/4
1/2*∫(1 - cos(2t)) dt from 0 to pi/4
1/2*[t - sin(t)*cos(t) eval. from 0 to pi/4]
1/2*[pi/4 - 1/2] = pi/8 - 1/4
-
http://calc101.com/trig_sub_4.html
this may help
this may help
-
1/8 (-2 + pi)