If sin theta = 1/5 and theta is in Quadrant I, find the exact value of sin two theta
-
sin 2Ө = 2 sin Ө cos Ө = 2 (1/5) (√24/5)
sin 2Ө = (2/25)(2√6) = 4√6 / 25
sin 2Ө = (2/25)(2√6) = 4√6 / 25
-
Pleased to help----thank you.
Report Abuse
-
sinx = 1/5
so cosx = ±√(1 - 1/25) -----Pythagorean Identity
cosx = (2/5)√6 > 0 because x in Q1
sin(2x) = 2sinxcosx
sin(2x) = 2*(1/5)*(2/5)√6
sin(2x) = (4/5)√6
so cosx = ±√(1 - 1/25) -----Pythagorean Identity
cosx = (2/5)√6 > 0 because x in Q1
sin(2x) = 2sinxcosx
sin(2x) = 2*(1/5)*(2/5)√6
sin(2x) = (4/5)√6
-
sin(t) = 1/5
cos(t) = +/- sqrt(1 - sin(t)^2) = +/- sqrt(24/25) = +/- (2/5) * sqrt(6)
Since we're in Q2, cos(t) = (-2/5) * sqrt(6)
sin(2t) =>
2 * sin(t) * cos(t) =>
2 * (1/5) * (-2/5) * sqrt(6) =>
(-4/25) * sqrt(6)
cos(t) = +/- sqrt(1 - sin(t)^2) = +/- sqrt(24/25) = +/- (2/5) * sqrt(6)
Since we're in Q2, cos(t) = (-2/5) * sqrt(6)
sin(2t) =>
2 * sin(t) * cos(t) =>
2 * (1/5) * (-2/5) * sqrt(6) =>
(-4/25) * sqrt(6)