using the substitution medthod
-
∫x*e^(-x²/2) dx
u = -x²/2
-du = x dx
-∫e^(u) du = -e^(-x²/2) + C
u = -x²/2
-du = x dx
-∫e^(u) du = -e^(-x²/2) + C
-
INTEGRAL[x*e^(-x^2/2) dx]
u=x^2/2; du=x dx
INTEGRAL[e^-u du]
-e^-u + C
-e^(-x^2/2) + C
u=x^2/2; du=x dx
INTEGRAL[e^-u du]
-e^-u + C
-e^(-x^2/2) + C