the answer is -12
-
log2(x^2 / 4) - 2log2(4x^4)
When x = -2:
= log2(4 / 4) - 2log2(4*16)
= log2(1) - 2log2(64)
= 0 - 2log2(2^6)
= 0 - 6*2log2(2)
= 0 - 12*1
= -12
When x = -2:
= log2(4 / 4) - 2log2(4*16)
= log2(1) - 2log2(64)
= 0 - 2log2(2^6)
= 0 - 6*2log2(2)
= 0 - 12*1
= -12
-
when x=-2...log2(x^2/4)-2log2(4x^4) becomes log2(4/4)-2log2(64)=0-2(6)=-12.
-
log2 (x^2/4) - 2log2 (4x^4) at x = -2
=log2[ x^2/4 / 16x^8]
= log2[1/64x^6]
= log2[1/4096]
= log2[2^-12]
= -12
=log2[ x^2/4 / 16x^8]
= log2[1/64x^6]
= log2[1/4096]
= log2[2^-12]
= -12