theta lies in quadrant 2
-
Quadrant II: cos,sec,tan,cot<0; sin,csc>0
So tan=opp/adj. So opp=24; adj=7; hyp=sqrt(576+49) = 25
sin=24/25; cos=-7/25; tan=-24/7
csc=25/24; sec=-25/7; cot=-7/24
So tan=opp/adj. So opp=24; adj=7; hyp=sqrt(576+49) = 25
sin=24/25; cos=-7/25; tan=-24/7
csc=25/24; sec=-25/7; cot=-7/24
-
Tan(T) = -24/7
Cot(T) = -7/24
EDIT, I got my quadrants turned around so indeed
Sec(T) = SQRT(-24/7^2 + 1) = SQRT(625/49) = -25/7 y negative in 2nd Quadrant.
Csc(T) = SQRT(-7/24^2 + 1) = sqrt(49/576+575/576) = sqrt(625/576) = 25/24 x poitive in second quadrant.
1/sec(T) = COS(T) = -7/25
1/csc(T) = SIN(T) = 24/25
Cot(T) = -7/24
EDIT, I got my quadrants turned around so indeed
Sec(T) = SQRT(-24/7^2 + 1) = SQRT(625/49) = -25/7 y negative in 2nd Quadrant.
Csc(T) = SQRT(-7/24^2 + 1) = sqrt(49/576+575/576) = sqrt(625/576) = 25/24 x poitive in second quadrant.
1/sec(T) = COS(T) = -7/25
1/csc(T) = SIN(T) = 24/25