4) Suppose r1 and r2 are two complex numbers. Using Euler’s formula exp(α + iβ) = exp(α)(cos(β) + isin(β)) whe
Favorites|Homepage
Subscriptions | sitemap
HOME > > 4) Suppose r1 and r2 are two complex numbers. Using Euler’s formula exp(α + iβ) = exp(α)(cos(β) + isin(β)) whe

4) Suppose r1 and r2 are two complex numbers. Using Euler’s formula exp(α + iβ) = exp(α)(cos(β) + isin(β)) whe

[From: ] [author: ] [Date: 12-02-21] [Hit: ]
y, v, and w are real numbers.The idea is to use Eulers formula, multiply out, and use the sum identities for sine and cosine.......
4) Suppose r1 and r2 are two complex numbers. Using Euler’s formula exp(α + iβ) =
exp(α)(cos(β) + isin(β)) where α, β are real, show that: (e^r1)(e^r2) = e^(r1+r2)

-
Let r1 = x + yi and r2 = v + wi, where x, y, v, and w are real numbers.
The idea is to use Euler's formula, multiply out, and use the sum identities for sine and cosine.

(e^r1)(e^r2) = (e^(x+yi))(e^(v+wi))
= (e^x)(cos y + i sin y)(e^v)(cos w + i sin w)
= (e^x)(e^v)(cos y + i sin y)(cos w + i sin w)
= (e^(x+v))(cos y cos w + i cos y sin w + i sin y cos w + i^2 sin y sin w)
= (e^(x+v))(cos y cos w - sin y sin w + i(cos y sin w + sin y cos w))
= (e^(x+v))(cos(y+w) + i sin(y+w))
= e^[(x+v) + i(y+w)]
= e^(x+yi+v+wi)
= e^(r1+r2).

Lord bless you today!
1
keywords: and,two,are,cos,alpha,numbers,rsquo,beta,isin,complex,Suppose,formula,Euler,Using,exp,whe,4) Suppose r1 and r2 are two complex numbers. Using Euler’s formula exp(α + iβ) = exp(α)(cos(β) + isin(β)) whe
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .