Solve for θ
2θ COS θ + θ = 0
2θ COS θ = - θ
Dividing both sides by 2θ
(2θ COS θ)/2θ = - θ/2θ
COS θ = –½
Taking cos to right side
θ = cos−1(–½)
θ = 120° or 2π/3
2θ COS θ + θ = 0
2θ COS θ = - θ
Dividing both sides by 2θ
(2θ COS θ)/2θ = - θ/2θ
COS θ = –½
Taking cos to right side
θ = cos−1(–½)
θ = 120° or 2π/3
-
Hello maria, you have not noticed that one of your answers is θ = 0 !!!
Report Abuse
-
rearrange the equation
2theta cos theta = - theta
divide by 2 theta
costheta = -1/2
so theta = 120 degrees
2theta cos theta = - theta
divide by 2 theta
costheta = -1/2
so theta = 120 degrees
-
θ(2 COS θ + 1) = 0
θ = 0 or 2 COS θ + 1 = 0
2 COS θ + 1 = 0 => COS θ = - 1/2 => θ = 2npi +/-2pi/3
so θ = 0 or 2npi +/-2pi/3
θ = 0 or 2 COS θ + 1 = 0
2 COS θ + 1 = 0 => COS θ = - 1/2 => θ = 2npi +/-2pi/3
so θ = 0 or 2npi +/-2pi/3
-
2θ COS θ + θ = 0
θ(2cosθ + 1) = 0
θ = 0
2cosθ + 1 = 0
cos θ = -1/2
θ = 2(pi)/3
θ(2cosθ + 1) = 0
θ = 0
2cosθ + 1 = 0
cos θ = -1/2
θ = 2(pi)/3