3^(2t+1) + 3^(t+2) = 3 1/3
-
put y = 3^(t+2)
=> y² = 3^(2(t+2)) = 3^(2t+4)
=> 3^(2t+1) = y²/3³ = y²/27
y² / 27 + y - 3 1/3 = 0
y² + 27 y - 90 = 0
discr = 27² + 4*90 = 33²
y = (-27 +- 33)/2 = -30 or 3
=> 3^(t+2) = 3 (-30 is impossible as 3^x > 0)
=> t+2 = 1
=> t = -1
=> y² = 3^(2(t+2)) = 3^(2t+4)
=> 3^(2t+1) = y²/3³ = y²/27
y² / 27 + y - 3 1/3 = 0
y² + 27 y - 90 = 0
discr = 27² + 4*90 = 33²
y = (-27 +- 33)/2 = -30 or 3
=> 3^(t+2) = 3 (-30 is impossible as 3^x > 0)
=> t+2 = 1
=> t = -1
-
logarithms.