e=mathematical constant~2.718281828459045
d/dx(e)=0
So,
d/dx(sin(x)*e)
=e.d/dx(sin(x))+d/dx(e).sin(x)
=e.cos(x)+0
=e.cos(x)
∴d/dx(sin(x)*e)=e.cos(x)
d/dx(e)=0
So,
d/dx(sin(x)*e)
=e.d/dx(sin(x))+d/dx(e).sin(x)
=e.cos(x)+0
=e.cos(x)
∴d/dx(sin(x)*e)=e.cos(x)
-
Hi Jannat,
Remember, e is just a number. e^(x), for example, is a function; but e itself is a constant.
d/dx [ e * sin(x) ] = e * d/dx [ sin(x) ] = e * cos(x).
Remember, e is just a number. e^(x), for example, is a function; but e itself is a constant.
d/dx [ e * sin(x) ] = e * d/dx [ sin(x) ] = e * cos(x).
-
e is a constant number for 2.71828...... we just use 'e'! :D
so rewriting equation...
d/dx ( e.sin(x) ) [since e is a constant...]
d/dx = e. [ cos(x) ] . 1
d/dx = e.cos(x) [ANS]
so rewriting equation...
d/dx ( e.sin(x) ) [since e is a constant...]
d/dx = e. [ cos(x) ] . 1
d/dx = e.cos(x) [ANS]
-
apply chain rule,
diff. gives
cos(x*e) x e x X*(e-1)
=eX*(e-1)cos(X*e)
diff. gives
cos(x*e) x e x X*(e-1)
=eX*(e-1)cos(X*e)
-
Since the derivative of sin(x) is cos(x) and e is multiplied to sin(x), it would be:
cos(x)*e
cos(x)*e
-
Answer: cos(x)*e .............