D/dx(sin(x)*e).......................................................
Favorites|Homepage
Subscriptions | sitemap
HOME > > D/dx(sin(x)*e).......................................................

D/dx(sin(x)*e).......................................................

[From: ] [author: ] [Date: 11-12-21] [Hit: ]
∴d/dx(sin(x)*e)=e.cos(x)-Hi Jannat,Remember, e is just a number. e^(x), for example,......
e=mathematical constant~2.718281828459045

d/dx(e)=0

So,

d/dx(sin(x)*e)

=e.d/dx(sin(x))+d/dx(e).sin(x)

=e.cos(x)+0

=e.cos(x)

∴d/dx(sin(x)*e)=e.cos(x)

-
Hi Jannat,

Remember, e is just a number. e^(x), for example, is a function; but e itself is a constant.

d/dx [ e * sin(x) ] = e * d/dx [ sin(x) ] = e * cos(x).

-
e is a constant number for 2.71828...... we just use 'e'! :D

so rewriting equation...

d/dx ( e.sin(x) ) [since e is a constant...]
d/dx = e. [ cos(x) ] . 1
d/dx = e.cos(x) [ANS]

-
apply chain rule,
diff. gives
cos(x*e) x e x X*(e-1)

=eX*(e-1)cos(X*e)

-
Since the derivative of sin(x) is cos(x) and e is multiplied to sin(x), it would be:

cos(x)*e

-
Answer: cos(x)*e .............
1
keywords: sin,dx,D/dx(sin(x)*e).......................................................
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .