So point P lies on y=[3x+ln2x]^2
x-coordinate of P is 0.5
How to I find the tangent?
x-coordinate of P is 0.5
How to I find the tangent?
-
y = (3x + ln(2x) )^2
y(1/2) = (3/2 + ln(1))^2 = 2.25
y ' = 2 (3x + ln(2x)) * d/dx [ 3x + ln(2x) ]
y ' = 2 (3x + ln(2x)) * (3 + 1/x) <=== slope of curve at x
y ' (1/2) = 2 (3/2 + ln(1)) * (3 + 2) <=== slope of curve at x = 1/2
y ' (1/2) = 15
So... slope = 15 and passes through (0.5 , 2.25)
(y - 2.25) = 15 (x - 0.5)
y = 15x - 5.25
graphic check:
http://www.wolframalpha.com/input/?i=y+%…
y(1/2) = (3/2 + ln(1))^2 = 2.25
y ' = 2 (3x + ln(2x)) * d/dx [ 3x + ln(2x) ]
y ' = 2 (3x + ln(2x)) * (3 + 1/x) <=== slope of curve at x
y ' (1/2) = 2 (3/2 + ln(1)) * (3 + 2) <=== slope of curve at x = 1/2
y ' (1/2) = 15
So... slope = 15 and passes through (0.5 , 2.25)
(y - 2.25) = 15 (x - 0.5)
y = 15x - 5.25
graphic check:
http://www.wolframalpha.com/input/?i=y+%…
-
y = (3x + ln(2x))^2
y(0.5) = (1.5 + ln 1)^2 = (1.5)^2 = 9/4
y ' = 2(3x + ln(2x))*(3 + 1/x)
y ' (0.5) = 2(1.5)(3 + 2) = 15
eqn of tangent with slope 15 and at (0.5, 9/4) is
y - 9/4 = 15(x - 1/2)
y - 9/4 = 15x - 15/2
y = 15x - 21/4
y = 15x - 5.25
y(0.5) = (1.5 + ln 1)^2 = (1.5)^2 = 9/4
y ' = 2(3x + ln(2x))*(3 + 1/x)
y ' (0.5) = 2(1.5)(3 + 2) = 15
eqn of tangent with slope 15 and at (0.5, 9/4) is
y - 9/4 = 15(x - 1/2)
y - 9/4 = 15x - 15/2
y = 15x - 21/4
y = 15x - 5.25
-
Find y
use x and y in (y-a)=m(x-b) where a=y1 b=y2
differentiate using the chain rule. Remember f'(x)=1/ax if f(x)=Inax
plug this value in for m.
Bingo.
use x and y in (y-a)=m(x-b) where a=y1 b=y2
differentiate using the chain rule. Remember f'(x)=1/ax if f(x)=Inax
plug this value in for m.
Bingo.
-
y(0.5) = 1.5^2 = 2.25
y' = 2[3x+ln2x][3+1/x] = 2(1.5)(3+2) = 15
Answer: y - 2.25 = 15(x-0.5)
y' = 2[3x+ln2x][3+1/x] = 2(1.5)(3+2) = 15
Answer: y - 2.25 = 15(x-0.5)