5/((x^2) + x + 1)^2
i don't even know what rule to use...
i don't even know what rule to use...
-
——————————————————————————————————————
5/(x² + x + 1)² = 5(x² + x + 1) ⁻² ← Now, take the derivative
d 5(x² + x + 1) ⁻² d(x² + x + 1)
——————— = 5[-2(x² + x + 1) ⁻³] • ———————
dx dx
= -10(x² + x + 1) ⁻³ • (2x+1)
-10(2x+1)
= —————— ← ANSWER
(x² + x + 1)³
——————————————————————————————————————
5/(x² + x + 1)² = 5(x² + x + 1) ⁻² ← Now, take the derivative
d 5(x² + x + 1) ⁻² d(x² + x + 1)
——————— = 5[-2(x² + x + 1) ⁻³] • ———————
dx dx
= -10(x² + x + 1) ⁻³ • (2x+1)
-10(2x+1)
= —————— ← ANSWER
(x² + x + 1)³
——————————————————————————————————————
-
5/((x^2) + x + 1)^2
First multiply it out.
5/(x^4+2x^3+3x^2+2x+1)
Move x terms to top
5*(x^-4+1/2x^-3+1/3x^-2+1/2)
5x^-4+5/2x^-3+5/3x^-2+5/2
Now take derivative
-20x^-5+15/2x^-4+10/3x^-3
Simplify
-5x^-3 * (4x^-2+3/2x^-1+2/3)
First multiply it out.
5/(x^4+2x^3+3x^2+2x+1)
Move x terms to top
5*(x^-4+1/2x^-3+1/3x^-2+1/2)
5x^-4+5/2x^-3+5/3x^-2+5/2
Now take derivative
-20x^-5+15/2x^-4+10/3x^-3
Simplify
-5x^-3 * (4x^-2+3/2x^-1+2/3)
-
if u and v are functions of x and y = u/v
dy/dx = [v(du/dx) - u(dv/dx)]/ v^2
your u = 5 so du/dx = 0
your v = ((x^2 + x + 1)^2 so dv/dx =2(x^2 + x + 1)(2x + 1)
v^2 = (x^2 + x + 1) ^4
dy/dx = [v(du/dx) - u(dv/dx)]/ v^2
your u = 5 so du/dx = 0
your v = ((x^2 + x + 1)^2 so dv/dx =2(x^2 + x + 1)(2x + 1)
v^2 = (x^2 + x + 1) ^4
-
Rewrite it as 5 * ((x^2) + x + 1)^-2