integral (sin10x)((cos10x+1)^(1/8))
-
Hello,
rewrite the integral as:
∫ [cos(10x) + 1]^(1/8) sin(10x) dx =
let:
[cos(10x) + 1] = u
differentiate both sides:
d[cos(10x) + 1] = du
10 [- sin(10x)] dx = du
- 10sin(10x) dx = du
sin(10x) dx = (-1/10) du
then, substituting:
∫ [cos(10x) + 1]^(1/8) sin(10x) dx = ∫ u^(1/8) (-1/10) du =
(pulling the constant out)
- (1/10) ∫ u^(1/8) du =
- (1/10) {1/[(1/8)+1]} u^[(1/8)+1] + C =
- (1/10) [1/(9/8)] u^(9/8) + C =
- (1/10)(8/9)u^(9/8) + C =
- (4/45)u^(9/8) + C
substitute back [cos(10x) + 1] for u, ending with:
∫ sin(10x) [cos(10x) + 1]^(1/8) dx = - (4/45)[cos(10x) + 1]^(9/8) + C
I hope it helps
rewrite the integral as:
∫ [cos(10x) + 1]^(1/8) sin(10x) dx =
let:
[cos(10x) + 1] = u
differentiate both sides:
d[cos(10x) + 1] = du
10 [- sin(10x)] dx = du
- 10sin(10x) dx = du
sin(10x) dx = (-1/10) du
then, substituting:
∫ [cos(10x) + 1]^(1/8) sin(10x) dx = ∫ u^(1/8) (-1/10) du =
(pulling the constant out)
- (1/10) ∫ u^(1/8) du =
- (1/10) {1/[(1/8)+1]} u^[(1/8)+1] + C =
- (1/10) [1/(9/8)] u^(9/8) + C =
- (1/10)(8/9)u^(9/8) + C =
- (4/45)u^(9/8) + C
substitute back [cos(10x) + 1] for u, ending with:
∫ sin(10x) [cos(10x) + 1]^(1/8) dx = - (4/45)[cos(10x) + 1]^(9/8) + C
I hope it helps