tan t.
please explain how to do this..
please explain how to do this..
-
Tan(t) = y/x
Tan(t) = 1/2 // -sqrt(3)/3 = 1/ - sqrt(3) = sqrt(3)/-3
Now the x and y values must be conbined to find the hypotenuse.
y^2 + x^2 = hypotenuse squared.
(1/2)^2 + [ - sqrt(3) ] ^2 = z^2
1/4 + 3/4 = 1
z^2 = 1
z= sqrt(1) = 1
Sin(t) = y/z = 1/2/1 = 1/2
Cos(t) = x/z = -sqrt(3)/2 / 1 = -sqrt(3)/2
Tan(t) = 1/2 // -sqrt(3)/3 = 1/ - sqrt(3) = sqrt(3)/-3
Now the x and y values must be conbined to find the hypotenuse.
y^2 + x^2 = hypotenuse squared.
(1/2)^2 + [ - sqrt(3) ] ^2 = z^2
1/4 + 3/4 = 1
z^2 = 1
z= sqrt(1) = 1
Sin(t) = y/z = 1/2/1 = 1/2
Cos(t) = x/z = -sqrt(3)/2 / 1 = -sqrt(3)/2
-
sin(t) = 1/2
cos(t) = -√3/2
tan(t) = -√3/3
cos(t) = -√3/2
tan(t) = -√3/3