Use series to evaluate the limit.
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Use series to evaluate the limit.

Use series to evaluate the limit.

[From: ] [author: ] [Date: 11-10-29] [Hit: ]
= lim(x→0) [1 - (1 - (3x)^2/2! + (3x)^4/4! - ...)] / [1 + 3x - (1 + 3x + (3x)^2/2!......
lim (x->0) (1-cos(3x))/(1+3x-e^(3x))

-
Using the series for sine and exp,
lim(x→0) [1 - cos(3x)] / [1 + 3x - e^(3x)]
= lim(x→0) [1 - (1 - (3x)^2/2! + (3x)^4/4! - ...)] / [1 + 3x - (1 + 3x + (3x)^2/2! + (3x)^3/3! + ...)]
= lim(x→0) [(3x)^2/2! - (3x)^4/4! + ...] / [-(3x)^2/2! - (3x)^3/3! + ...]
= lim(x→0) [3^2/2! - 3^4 x^2/4! + ...] / [-3^2/2! - 3^3 x/3! + ...]
= [3^2/2! - 0] / [-3^2/2! - 0]
= -1.

I hope this helps!
1
keywords: to,series,Use,evaluate,the,limit,Use series to evaluate the limit.
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .