Q: Differentiate f(x) = (1 + xe^x) / (x - e^x)
Can someone please explain how to solve this question?
Can someone please explain how to solve this question?
-
if f = u / v
then f´= (v u´ - u v´)/ v^2
f = (1 + xe^x) / (x - e^x)
u = (1 + xe^x)
u´= 0 + e^x + xe^x
v = (x - e^x)
v´= 1 - e^x
so, f´(x) = [ (x - e^x)(e^x + xe^x) - (1 + xe^x) (1 - e^x) ] / (x - e^x)^2
then try to simplify it. Good luck
then f´= (v u´ - u v´)/ v^2
f = (1 + xe^x) / (x - e^x)
u = (1 + xe^x)
u´= 0 + e^x + xe^x
v = (x - e^x)
v´= 1 - e^x
so, f´(x) = [ (x - e^x)(e^x + xe^x) - (1 + xe^x) (1 - e^x) ] / (x - e^x)^2
then try to simplify it. Good luck