Help solving a double integral to find the area of the region.?
Use a double integral to find the area of the region.
The region enclosed by the curve r = 5 + 4cos(θ).
The area of the region is __________ .
Use a double integral to find the area of the region.
The region enclosed by the curve r = 5 + 4cos(θ).
The area of the region is __________ .
-
Required area
= ∫ (0 to π) r^2 dθ
= ∫ (0 to π) (5+ 4cosθ)^2 dθ
= ∫ (0 to π) (25 + 40cosθ + 16cos^2 θ) dθ
= ∫ (0 to π) [25 + 40cosθ + 8(1 + cos2θ)] dθ
= [33θ + 40sinθ + 4sin2θ] (0 to π)
= 33π.
= ∫ (0 to π) r^2 dθ
= ∫ (0 to π) (5+ 4cosθ)^2 dθ
= ∫ (0 to π) (25 + 40cosθ + 16cos^2 θ) dθ
= ∫ (0 to π) [25 + 40cosθ + 8(1 + cos2θ)] dθ
= [33θ + 40sinθ + 4sin2θ] (0 to π)
= 33π.