Find the curvature of
r(t) = < 3t, t^2, t^3 >
at the point
(3, 1, 1).
r(t) = < 3t, t^2, t^3 >
at the point
(3, 1, 1).
-
r'(t) = <3, 2t, 3t²> and r''(t) = <0, 2, 6t>.
The point (3, 1, 1) corresponds to t = 1.
r'(1) = <3, 2, 3>, r''(1) = <0, 2, 6>
r'(1) x r''(1) = <6, -18, 6>, ||r'(1) x r''(1)|| = 6√(11), and ||r'(1)|| = √(22)
The curvature at t = 1 is
k = ||r'(1) x r''(1)||/||r'(1)||^3 = 3/(11√2).
The point (3, 1, 1) corresponds to t = 1.
r'(1) = <3, 2, 3>, r''(1) = <0, 2, 6>
r'(1) x r''(1) = <6, -18, 6>, ||r'(1) x r''(1)|| = 6√(11), and ||r'(1)|| = √(22)
The curvature at t = 1 is
k = ||r'(1) x r''(1)||/||r'(1)||^3 = 3/(11√2).