Squaring a number is the same as multiplying the number by itself (7*7). In this case, 7 squared is 49.
((x^(9)y^(7)z^(-4))/(49)*(1)/(x^(5)y^(1…
Remove the negative exponent in the numerator by rewriting (x^(9)y^(7)z^(-4))/(49) as (x^(9)y^(7))/(49(z^(4))). A negative exponent follows the rule: a^(-n)=(1)/(a^(n)).
((x^(9)y^(7))/(49(z^(4)))*(1)/(x^(5)y^(…
Remove the negative exponent in the denominator by rewriting (x^(9)y^(7)z^(-4))/(49) as (x^(9)y^(7))/(49(z^(4))). A negative exponent follows the rule: a^(-n)=(1)/(a^(n)).
((x^(9)y^(7))/(49z^(4))*(1)/(x^(5)y^(10…
Remove the common factor of x^(5)y^(7) from the numerator of the first term (x^(9)y^(7))/(49z^(4)) and the denominator of the second term (1)/(x^(5)y^(10)z).
((x^(4))/(49z^(4))*(1)/(y^(3)z))
Multiply (x^(4))/(49z^(4)) by (1)/(y^(3)z) to get (x^(4))/(49y^(3)z^(5)).
((x^(4))/(49y^(3)z^(5)))
Remove the parentheses around the expression (x^(4))/(49y^(3)z^(5)).
(x^(4))/(49y^(3)z^(5))
-----------------------------------
(14n^(0)m^(-7))/(16^(n))-4m^(2)
Any variable raised to the power of 0 is 1.
(14m^(-7))/(16^(n))-4m^(2)
Remove the negative exponent in the numerator by rewriting (14m^(-7))/(16^(n)) as (14)/(16^(n)(m^(7))). A negative exponent follows the rule: a^(-n)=(1)/(a^(n)).
(14)/(16^(n)(m^(7)))-4m^(2)
Remove the negative exponent in the denominator by rewriting (14m^(-7))/(16^(n)) as (14)/(16^(n)(m^(7))). A negative exponent follows the rule: a^(-n)=(1)/(a^(n)).
(14)/(16^(n)m^(7))-4m^(2)
-------------------------------------
(5^(-1)x^(-3)y^(4))^(-2)(x^(5)y^(-3))^(…
Remove the negative exponent by rewriting 5^(-1)x^(-3)y^(4) as (x^(-3)y^(4))/(5). A negative exponent follows the rule a^(-n)=(1)/(a^(n)).
((x^(-3)y^(4))/(5))^(-2)(x^(5)y^(-3))^(…
Reduce the expression (25x^(6)y^(3))/(x^(5)y^(8)) by removing a factor of x^(5)y^(3) from the numerator and denominator.
(25x)/(y^(5))