How do you find the inverse of 4e^kt=y?
Thank you for your time
Thank you for your time
-
Let f(t) = y and g(y) = t
ie g is inverse of f
y = 4e^(kt)
y/4 = e^(kt)
ln (y/4) = kt
t = (1/k) ln (y/4)
g(y) = (1/k) ln (y/4)
g(t) = (1/k) ln (t/4)_________inverse function
ie g is inverse of f
y = 4e^(kt)
y/4 = e^(kt)
ln (y/4) = kt
t = (1/k) ln (y/4)
g(y) = (1/k) ln (y/4)
g(t) = (1/k) ln (t/4)_________inverse function
-
y = 4e^(kt)
Switch y and t; then solve for y.
t = 4e^(ky)
ln(t) = ln(4) + ln(e^(ky))
ln(t) = ln(4) + ky
ky = [ln(t) - ln(4)]
ky = ln(t/4)
y = (1/k)ln(t/4) <== answer
Switch y and t; then solve for y.
t = 4e^(ky)
ln(t) = ln(4) + ln(e^(ky))
ln(t) = ln(4) + ky
ky = [ln(t) - ln(4)]
ky = ln(t/4)
y = (1/k)ln(t/4) <== answer