Calculus 3 Help Please! Lagrange Multipliers!!
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Calculus 3 Help Please! Lagrange Multipliers!!

Calculus 3 Help Please! Lagrange Multipliers!!

[From: ] [author: ] [Date: 11-08-18] [Hit: ]
By Lagrange Multipliers, ∇f = λ∇g.==> = λ.==> x = 1/λ and y = -3/(4λ).==> λ^2 = 17/32 = 34/64.==> λ = ±√34 / 8.......
Use Lagrange multipliers to determine the maximum value of f(x, y) = 2x − 3y subject to the constraint
x^2 + 2y^2 = 4.

-
Let f(x,y) = 2x - 3y subject to g(x,y) = x^2 + 2y^2 = 4.

By Lagrange Multipliers, ∇f = λ∇g.
==> <2, -3> = λ<2x, 4y>.

Equate like entries:
2 = 2λx and -3 = 4λy
==> x = 1/λ and y = -3/(4λ).

Plug this into g:
(1/λ)^2 + 2(-3/(4λ))^2 = 4
==> 1/λ^2 + 9/(8λ^2) = 4
==> λ^2 = 17/32 = 34/64.
==> λ = ±√34 / 8.

Hence, we have two critical points
(±8/ √34, ∓6/ √34).

Plug these points into f:
f(8/ √34, -6/ √34) = √34 <---Maximum
f(-8/ √34, 6/ √34) = -√34 <---Minimum

I hope this helps!

-
I recommend the writeup here: http://www.slimy.com/~steuard/teaching/t…
1
keywords: Lagrange,Help,Calculus,Please,Multipliers,Calculus 3 Help Please! Lagrange Multipliers!!
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .