To the parabola (x+2y)^2+2x-y-3=0 parallel to the line 4x+3y=2.
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > To the parabola (x+2y)^2+2x-y-3=0 parallel to the line 4x+3y=2.

To the parabola (x+2y)^2+2x-y-3=0 parallel to the line 4x+3y=2.

[From: ] [author: ] [Date: 11-08-13] [Hit: ]
......
y = (-4/3) * x + (7/12)


y = (-4/3) * x + b
0 = (-4/3) * 1 + b
4/3 = b

y = (-4/3) * x + (4/3)

-
Line 4x + 3y = 2 has slope = -4/3

So we need to find point on parabola where dy/dx = -4/3

We find dy/dx using implicit differentiation:

(x + 2y)² + 2x - y - 3 = 0

2(x+2y) (1 + 2 dy/dx) + 2 - dy/dx - 0 = 0
2(x+2y) + 4(x+2y) dy/dx + 2 - dy/dx = 0
4(x+2y) dy/dx - dy/dx = -2(x+2y) - 2
dydx (4x+8y-1) = -2(x+2y+1)

dy/dx = -2(x+2y+1) / (4x+8y-1)

--------------------

Now we let dy/dx = -4/3
-2(x+2y+1) / (4x+8y-1) = -4/3
2(x+2y+1) / (4x+8y-1) = 4/3
4(4x+8y-1) = 6(x+2y+1)
16x + 32y - 4 = 6x + 12y + 6
10x = 10 - 20y
x = 1 - 2y

--------------------

Now we substitute x with (1-2y) in equation of parabola, and solve for y:

(x + 2y)² + 2x - y - 3 = 0
(1-2y + 2y)² + 2(1-2y) - y - 3 = 0
(1)² + 2 - 4y - y - 3 = 0
-5y = 0
y = 0

x = 1-2y = 1

--------------------

Line tangent to parabola with slope = -4/3 passes through point (1, 0)

y = -4/3 (x - 1)
y = -4/3 x + 4/3

4x + 3y = 4

http://www.wolframalpha.com/input/?i=%28…
keywords: parabola,parallel,To,2.,to,line,the,To the parabola (x+2y)^2+2x-y-3=0 parallel to the line 4x+3y=2.
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .