sec(2theta) = ?
-
tan(θ) = 3/13
3^2 + 13^2 = z^2
9 + 169 = z^2
178 = z^2
√(178) = z
sin(θ) = 3/√(178)
cos(θ) = 13/√(178)
(sec(2θ)
(1 / cos(2θ) )
(1 / ( cos^2(θ) - sin^2(θ) )
(1 / ( 13/√(178) )^2 - (3/√(178))^2 )
(1 / (169/178) - (9/178) )
(1 / (169 - 9/178) )
(1 / (160/178) )
178/160
89/80
3^2 + 13^2 = z^2
9 + 169 = z^2
178 = z^2
√(178) = z
sin(θ) = 3/√(178)
cos(θ) = 13/√(178)
(sec(2θ)
(1 / cos(2θ) )
(1 / ( cos^2(θ) - sin^2(θ) )
(1 / ( 13/√(178) )^2 - (3/√(178))^2 )
(1 / (169/178) - (9/178) )
(1 / (169 - 9/178) )
(1 / (160/178) )
178/160
89/80