C1 curve.... x=t+1 y=2t^2
C2 curve.... x=2t+1 y=t^2+7
what's the point of intersection?
C2 curve.... x=2t+1 y=t^2+7
what's the point of intersection?
-
for the second equation replace t with something else (e.g. u).
x=t+1 y=2t^2
x=2u+1 y=u^2+7
Now solve for t and u such that both the x and y coordinates match:
t+1 = 2u+1 (x match)
2t^2 = u^2+7 (y match)
You can rearrange the x equation to get:
t = 2u
Then replace t with 2u in the second equation
2(2u)^2 = u^2 + 7
etc.
Note you will get two solutions
x=t+1 y=2t^2
x=2u+1 y=u^2+7
Now solve for t and u such that both the x and y coordinates match:
t+1 = 2u+1 (x match)
2t^2 = u^2+7 (y match)
You can rearrange the x equation to get:
t = 2u
Then replace t with 2u in the second equation
2(2u)^2 = u^2 + 7
etc.
Note you will get two solutions
-
Thank You, Paula !
Report Abuse
-
Equating the corresponding x's and y's,
... x = t + 1 ... and ... x = 2t + 1
∴ t = x - 1 ∴ x = 2(x-1) + 1 ∴ x = 2x - 2 + 1 ∴ x = 1 ....... (1)
_________________________________
... y = 2t² ... and ... y = t² + 7
∴ t = √(y) / √(2) ∴ y = ( y/2 ) + 7
∴ 2y = y + 14 ∴ y = 14 ..................................... (2)
_______________________________
From (1) and (2),
the point of intersection is
( x, y ) ≡ ( 1, 14 ) ........................................… Ans.
________________________________
... x = t + 1 ... and ... x = 2t + 1
∴ t = x - 1 ∴ x = 2(x-1) + 1 ∴ x = 2x - 2 + 1 ∴ x = 1 ....... (1)
_________________________________
... y = 2t² ... and ... y = t² + 7
∴ t = √(y) / √(2) ∴ y = ( y/2 ) + 7
∴ 2y = y + 14 ∴ y = 14 ..................................... (2)
_______________________________
From (1) and (2),
the point of intersection is
( x, y ) ≡ ( 1, 14 ) ........................................… Ans.
________________________________