if f (2.9) = 4 f'(2.9)=12 g(2.9)=8 and g'(2.9)= 4
then... find (f/g)' (2.9) and (f/f+g)' (2.9)
please help its urgent
thanks so much
then... find (f/g)' (2.9) and (f/f+g)' (2.9)
please help its urgent
thanks so much
-
(f/g)(2.9) = f(2.9) / g(2.9)
(f/g)'(2.9) = (g(2.9)*f '(2.9) - f(2.9)*g'(2.9)) / g'(2.9)²
= (8*12 - 4*4) / 4²
= 5
(f/(f+g))(2.9) = f(2.9) / (f(2.9) + g(2.9))
(f/(f+g))'(2.9) = ((f(2.9) + g(2.9))*f '(2.9) - f(2.9)*(f '(2.9) + g'(2.9)) / (f(2.9) + g(2.9))²
= ((4 + 8)*12 - 4*(12 + 4)) / (4 + 8)²
= (144 - 64) / 144
= 5/9
(f/g)'(2.9) = (g(2.9)*f '(2.9) - f(2.9)*g'(2.9)) / g'(2.9)²
= (8*12 - 4*4) / 4²
= 5
(f/(f+g))(2.9) = f(2.9) / (f(2.9) + g(2.9))
(f/(f+g))'(2.9) = ((f(2.9) + g(2.9))*f '(2.9) - f(2.9)*(f '(2.9) + g'(2.9)) / (f(2.9) + g(2.9))²
= ((4 + 8)*12 - 4*(12 + 4)) / (4 + 8)²
= (144 - 64) / 144
= 5/9