How would I find f ' (3) using IMPLICIT DIFFERENTIATION?
Let y = f(x). If xy^3 + xy = 6, and f(3) = 1, find f ' (3)
Can someone please explain or show steps so I can understand? Thank you
Let y = f(x). If xy^3 + xy = 6, and f(3) = 1, find f ' (3)
Can someone please explain or show steps so I can understand? Thank you
-
Differentiate both sides implicitly
d(xy^3)+d(xy)=0
Use the chain rule
y^3+3xy^2y'+y+xy'=0
Plug in y=f(3)=1, and find y'=f'(3)....
1+9y'+1+3y'=0
y'=f'(3)=-1/6
d(xy^3)+d(xy)=0
Use the chain rule
y^3+3xy^2y'+y+xy'=0
Plug in y=f(3)=1, and find y'=f'(3)....
1+9y'+1+3y'=0
y'=f'(3)=-1/6
-
f(x)=y
So f'(x)=y,actually x and y is y and x..
So f'(3)=?,y=3
x.3^3+x.3=6
27x+3x=6
30x=6
x=1/5
So f'(x)=y,actually x and y is y and x..
So f'(3)=?,y=3
x.3^3+x.3=6
27x+3x=6
30x=6
x=1/5