Solve for x
-
log2(x^2-20) - log2(x) = 3
log2((x^2-20)/x) = 3
x^2 - 20 / x = 2^3
x^2 - 20 = 8x
x^2 -8x - 20 = 0
(x-10)(x+2) = 0
x = 10, -2
log2((x^2-20)/x) = 3
x^2 - 20 / x = 2^3
x^2 - 20 = 8x
x^2 -8x - 20 = 0
(x-10)(x+2) = 0
x = 10, -2
-
3 = log[2] ((x² - 20)/x)
8x = x² - 20
x² - 8x - 20 = 0
(x - 10)(x + 2) = 0
x = 10 and x = -2(reject)
Answer: x = 10
8x = x² - 20
x² - 8x - 20 = 0
(x - 10)(x + 2) = 0
x = 10 and x = -2(reject)
Answer: x = 10