(y+1)/(y-1)=(-10)^(2x)  
-
    The negative base makes it very difficult to actually solve--in fact impossible.  If we assume that it is instead ((-10)²)^x = 100^x, (which is technically the same thing), the we get something solvable: 
 
(y + 1)/(y - 1) = 100^x
--> take the natural log of both sides
 
ln((y + 1)/(y - 1) = ln(1000^x)
-->
 
x * ln(100) = ln((y + 1)/(y - 1))
-->
 
x = ln((y + 1) / (y - 1)) / ln(100)
(y + 1)/(y - 1) = 100^x
--> take the natural log of both sides
ln((y + 1)/(y - 1) = ln(1000^x)
-->
x * ln(100) = ln((y + 1)/(y - 1))
-->
x = ln((y + 1) / (y - 1)) / ln(100)
-
(y + 1) / (y - 1) = 100^x 
 
log [ (y + 1) / (y - 1) ] = x log 100
 
log [ (y + 1) / (y - 1) ] = 2 x __________for log base 10
 
x = log [ (y + 1) / (y - 1) ] /2
      log [ (y + 1) / (y - 1) ] = x log 100
log [ (y + 1) / (y - 1) ] = 2 x __________for log base 10
x = log [ (y + 1) / (y - 1) ] /2
