(y+1)/(y-1)=(-10)^(2x)
-
The negative base makes it very difficult to actually solve--in fact impossible. If we assume that it is instead ((-10)²)^x = 100^x, (which is technically the same thing), the we get something solvable:
(y + 1)/(y - 1) = 100^x
--> take the natural log of both sides
ln((y + 1)/(y - 1) = ln(1000^x)
-->
x * ln(100) = ln((y + 1)/(y - 1))
-->
x = ln((y + 1) / (y - 1)) / ln(100)
(y + 1)/(y - 1) = 100^x
--> take the natural log of both sides
ln((y + 1)/(y - 1) = ln(1000^x)
-->
x * ln(100) = ln((y + 1)/(y - 1))
-->
x = ln((y + 1) / (y - 1)) / ln(100)
-
(y + 1) / (y - 1) = 100^x
log [ (y + 1) / (y - 1) ] = x log 100
log [ (y + 1) / (y - 1) ] = 2 x __________for log base 10
x = log [ (y + 1) / (y - 1) ] /2
log [ (y + 1) / (y - 1) ] = x log 100
log [ (y + 1) / (y - 1) ] = 2 x __________for log base 10
x = log [ (y + 1) / (y - 1) ] /2