x^(7-1)+x^(4-1) = x^6 + x ^ 3
-
As written:
x^7 + (x^4 /x) = x^7 + x^3
If it's actually (x^7 + x^4) / x, factor the numerator:
[x(x^6 + x^3)] / x = x^6 + x^3
x^7 + (x^4 /x) = x^7 + x^3
If it's actually (x^7 + x^4) / x, factor the numerator:
[x(x^6 + x^3)] / x = x^6 + x^3
-
x^7 + x^4/x
= x^6 + x^3
= x^3(x^3 + 1)
= x^3(x + 1)(x^2 - x + 1)
OR
x^7+x^4/x
= x^7 + x^3
= x^3(x^4 + 1)
= x^6 + x^3
= x^3(x^3 + 1)
= x^3(x + 1)(x^2 - x + 1)
OR
x^7+x^4/x
= x^7 + x^3
= x^3(x^4 + 1)