Evaluate the integral.
integeal {dx} / {(x-6)(x-3)(x+1)}
integeal {dx} / {(x-6)(x-3)(x+1)}
-
∫dx/[(x - 6)(x - 3)(x + 1)]
Using partial fractions:
A/(x - 6) + B/(x - 3) + C/(x + 1) = 1/[(x - 6)(x - 3)(x + 1)]
A(x - 3)(x + 1) + B(x - 6)(x + 1) + C(x - 6)(x - 3) = 1
When x = 3:
-12B = 1 => B = -1/12
When x = -1:
28C = 1 => C = 1/28
When x = 6:
21A = 1 => A = 1/21
The integral therefore becomes:
∫1/21*1/(x - 6) - 1/12*1/(x - 3) + 1/28*1/(x + 1) dx
= 1/21*ln|x - 6| - 1/12*ln|x - 3| + 1/28*ln|x + 1| + C
Using partial fractions:
A/(x - 6) + B/(x - 3) + C/(x + 1) = 1/[(x - 6)(x - 3)(x + 1)]
A(x - 3)(x + 1) + B(x - 6)(x + 1) + C(x - 6)(x - 3) = 1
When x = 3:
-12B = 1 => B = -1/12
When x = -1:
28C = 1 => C = 1/28
When x = 6:
21A = 1 => A = 1/21
The integral therefore becomes:
∫1/21*1/(x - 6) - 1/12*1/(x - 3) + 1/28*1/(x + 1) dx
= 1/21*ln|x - 6| - 1/12*ln|x - 3| + 1/28*ln|x + 1| + C