Indefinite Integrals HELP.
Favorites|Homepage
Subscriptions | sitemap
HOME > > Indefinite Integrals HELP.

Indefinite Integrals HELP.

[From: ] [author: ] [Date: 13-01-21] [Hit: ]
......
∫(1/2 - 3x +x^2)dx can anyone show me how to solve this.. Thank you

-
∫1/2dx - ∫3xdx + ∫x^2dx

1/2 ∫dx - 3∫xdx + ∫x^2dx

1/2(x) - 3(x^2/2) + (x^3/3) + C

or x/2- 3/2(x^2) + x^3/3 + C

-
well break this in 3 parts

∫(1/2)dx - ∫(3x)dx + ∫(x^2)dx

take constants outside and apply the formula ∫(x^n)dx = x^(n+1) / (n+1) + C

so you will get

(1/2)*x - 3*(x^2)/2 + (x^3)/3 + C

-
∫(1/2 - 3x +x^2)dx
=1/2x - 3/2x^2 + 1/3x^3 + C answer//

-
Use the power rule for derivatives in reverse.
∫(1/2 - 3x +x^2)dx =
x/2 - 3x^2/2 + x^3/3 + c

-
∫(1/2 - 3x +x²)dx = 1/2∫dx - 3∫x dx + ∫x² dx
= 1/2 x - 3/2 x² + x³/3 + C
1
keywords: HELP,Integrals,Indefinite,Indefinite Integrals HELP.
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .