Please give a proper solution
-
Jakey boy its the same as before.
[(1 / (x+h)^5) - (1/x^5)] / h
(x^5 - (x+h)^5) / (x+h)^5 (x^5) h
(x^5 - (x^5 + 5x^4h + 10x^3h^2 + 10x^2h^3 + 5xh^4 + h^5)) / [(x+h)^5 (x^5) h]
-(5x^4h + 10x^3h^2 + 10x^2h^3 + 5xh^4 + h^5) / [(x+h)^5 (x^5) h]
Cancel an h:
[-5x^4 - 10x^3h - 10x^2h^2 - 5xh^3 - h^4] / [(x+h)^5 (x^5)]
Take limit as h -->0
[-5x^4] / (x^5)(x^5)
Cancel an x^4:
(-5) / (x^6)
Check by direct differentiation:
d/dx (x^-5) = -5x^-6 = -5/x^6 :)
[(1 / (x+h)^5) - (1/x^5)] / h
(x^5 - (x+h)^5) / (x+h)^5 (x^5) h
(x^5 - (x^5 + 5x^4h + 10x^3h^2 + 10x^2h^3 + 5xh^4 + h^5)) / [(x+h)^5 (x^5) h]
-(5x^4h + 10x^3h^2 + 10x^2h^3 + 5xh^4 + h^5) / [(x+h)^5 (x^5) h]
Cancel an h:
[-5x^4 - 10x^3h - 10x^2h^2 - 5xh^3 - h^4] / [(x+h)^5 (x^5)]
Take limit as h -->0
[-5x^4] / (x^5)(x^5)
Cancel an x^4:
(-5) / (x^6)
Check by direct differentiation:
d/dx (x^-5) = -5x^-6 = -5/x^6 :)
-
d/dx [ 1 / x^5 ] = lim h ---> 0 [ 1 / (x+h)^5 - 1 / x^5] / h =
lim h ---> 0 [ (x^5 - (x+h)^5) / [h * (x+h)^5 * x^5] =
lim h ---> 0 [ (x^5 - (x^5 + 5hx^4 + 10h^2 x^3 + 10h^3 x^2 + 5h^4 x + h^5)) / [h * (x+h)^5 * x^5] =
lim h ---> 0 [ ( - (5x^4 + 10h x^3 + 10h^2 x^2 + 5h^3 x + h^4)) / [(x+h)^5 * x^5] =
Evaluate for h = 0 ---->> [ ( - (5x^4 + 10h x^3 + 10h^2 x^2 + 5h^3 x + h^4)) / [(x+h)^5 * x^5] =
[ ( - (5x^4 + 0 + 0 + 0 + 0)) / [(x+0)^5 * x^5] = - 5x^4 / x^10 = - 5 / x^6
lim h ---> 0 [ (x^5 - (x+h)^5) / [h * (x+h)^5 * x^5] =
lim h ---> 0 [ (x^5 - (x^5 + 5hx^4 + 10h^2 x^3 + 10h^3 x^2 + 5h^4 x + h^5)) / [h * (x+h)^5 * x^5] =
lim h ---> 0 [ ( - (5x^4 + 10h x^3 + 10h^2 x^2 + 5h^3 x + h^4)) / [(x+h)^5 * x^5] =
Evaluate for h = 0 ---->> [ ( - (5x^4 + 10h x^3 + 10h^2 x^2 + 5h^3 x + h^4)) / [(x+h)^5 * x^5] =
[ ( - (5x^4 + 0 + 0 + 0 + 0)) / [(x+0)^5 * x^5] = - 5x^4 / x^10 = - 5 / x^6
-
(f(x+h)-f(x))/h
=(1/(x+h)^5 - 1/x^5)/h
=(1/(x+h)^5 - 1/x^5)/h