Hey can someone please guide me through with steps on this and factor the end result ?
Find derivative (3x^2 - 4x + 2) e^(-2x^2+3)
Thanks :)
Find derivative (3x^2 - 4x + 2) e^(-2x^2+3)
Thanks :)
-
product rule
d (uv )/dx = u dv/dx + v du/dx
(3x^2-4x+2) (-4x)e^(3-2x^2) + e^(3-2x^2) (6x-4)
e^(3-2x^2) [ -12x^3+16x^2-8x +6x -4]
e^(3-2x^2) (-12x^3+16x^2 -2x -4)
-2 (6x^3-8x^2 +x + 2) e^(3-2x^2)
d (uv )/dx = u dv/dx + v du/dx
(3x^2-4x+2) (-4x)e^(3-2x^2) + e^(3-2x^2) (6x-4)
e^(3-2x^2) [ -12x^3+16x^2-8x +6x -4]
e^(3-2x^2) (-12x^3+16x^2 -2x -4)
-2 (6x^3-8x^2 +x + 2) e^(3-2x^2)