find the exact limit of [ sqrt(3+x) - sqrt(3) ] / x
as x approaches 0
use the limit Laws to find the exact value
as x approaches 0
use the limit Laws to find the exact value
-
Using conjugates:
lim(x→0) (√(3+x) - √3) / x
= lim(x→0) (√(3+x) - √3) * (√(3+x) + √x) / [x * (√(3+x) + √3)]
= lim(x→0) ((3+x) - 3) / [x(√(3+x) + √3)]
= lim(x→0) x / [x(√(3+x) + √3)]
= lim(x→0) 1 / (√(3+x) + √3)
= 1/(2√3).
I hope this helps!
lim(x→0) (√(3+x) - √3) / x
= lim(x→0) (√(3+x) - √3) * (√(3+x) + √x) / [x * (√(3+x) + √3)]
= lim(x→0) ((3+x) - 3) / [x(√(3+x) + √3)]
= lim(x→0) x / [x(√(3+x) + √3)]
= lim(x→0) 1 / (√(3+x) + √3)
= 1/(2√3).
I hope this helps!