Inequality...Assume b < c
Favorites|Homepage
Subscriptions | sitemap
HOME > > Inequality...Assume b < c

Inequality...Assume b < c

[From: ] [author: ] [Date: 12-08-18] [Hit: ]
......
Solve the inequality and write answer in interval notation.

|x - a| + b < c

-
|x-a|+b
|x-a|
-(c-b)<(x-a)
b-c<(x-a)
a+b-c
(a+b-c,a+c-b)

-
|x - a| + b < c
|x - a| < c - b
(x - a)^2 < (c - b)^2
x^2 - 2ax + a^2 - (c - b)^2 < 0
consider x^2 - 2ax + a^2 - (c - b)^2 = 0
x = a +/- sqrt(4a^2 - 4(a^2 - (c - b)^2))/2
x = a +/- (c - b)

x = a + c - b is a solution and x = a - c + b is a solution

therefore a - c + b < x < a + c - b

-
|x - a| + b < c
|x - a| < c - b [Since b < c, c - b > 0]
-(c - b) < x - a < c - b
-c + b < x - a < c - b
a + b - c < x < a - b + c
x ∊ (a + b - c, a - b + c)

-
Solve for what?
1
keywords: Assume,Inequality,lt,Inequality...Assume b < c
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .