Complex variables-series
Favorites|Homepage
Subscriptions | sitemap
HOME > > Complex variables-series

Complex variables-series

[From: ] [author: ] [Date: 12-08-09] [Hit: ]
R = 1.I hope this helps!......
Find the function f(z) =log z given in a Taylor series around -1. Specify the maximum disk where this representation is valid
Thanks for your help

-
Starting with the geometric series 1/(1 - t) = Σ(n = 0 to ∞) t^n:

Integrate both sides from 0 to z:
-log(1 - z) = Σ(n = 0 to ∞) (-1)^n z^(n+1)/(n+1).
==> log(1 - z) = Σ(n = 0 to ∞) (-1)^(n+1) z^(n+1)/(n+1)
==> log(1 - z) = Σ(n = 1 to ∞) (-1)^n z^n/n
---------------
So, log z
= log(1 - (z + 1))
= Σ(n = 1 to ∞) (-1)^n (z+1)^n/n.

This converges for |z+1| < 1.
So, R = 1.

I hope this helps!
1
keywords: Complex,variables,series,Complex variables-series
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .