3^√54 / 3^√2
3^√6 / 3^√48
√75 / √3
3√x^12 / 64y^6
3^√6 / 3^√48
√75 / √3
3√x^12 / 64y^6
-
I assume that "3^√" means ∛, i.e., cube root.
∛54/∛2 = ∛(27*2)/∛2
= ∛27 ∛2/∛2
= ∛(3³)
= 3
∛6/∛48 = ∛6/∛(8*6)
= ∛6/[∛8 ∛6]
= 1/∛(2³)
= 1/2
√75/√3 = √(25*3)/√3
= √25 √3/√3
= √(5²)
= 5
∛x^12/∛(64y^6) = ∛(x^(4*3)) / ∛(4³ y^(2*3))
= ∛((x^4)³) / [∛(4³)∛((y²)³)]
= x^4/(4y²)
∛54/∛2 = ∛(27*2)/∛2
= ∛27 ∛2/∛2
= ∛(3³)
= 3
∛6/∛48 = ∛6/∛(8*6)
= ∛6/[∛8 ∛6]
= 1/∛(2³)
= 1/2
√75/√3 = √(25*3)/√3
= √25 √3/√3
= √(5²)
= 5
∛x^12/∛(64y^6) = ∛(x^(4*3)) / ∛(4³ y^(2*3))
= ∛((x^4)³) / [∛(4³)∛((y²)³)]
= x^4/(4y²)