Given that:
f(x) = x^9 h(x)
h(-1)= 2
h ' (-1) = 5
Calculate f ' (-1)
please help ASAP
f(x) = x^9 h(x)
h(-1)= 2
h ' (-1) = 5
Calculate f ' (-1)
please help ASAP
-
Use the product rule:
f ' (x) = x^9 h ' (x) + (derivative of x^9) h(x)
= x^9 h ' (x) + 9x^8 h(x).
f ' (-1) = (-1)^9 h ' (-1) + 9(-1)^8 h(-1)
= (-1)(5) + 9(2)
= 13.
Lord bless you today!
f ' (x) = x^9 h ' (x) + (derivative of x^9) h(x)
= x^9 h ' (x) + 9x^8 h(x).
f ' (-1) = (-1)^9 h ' (-1) + 9(-1)^8 h(-1)
= (-1)(5) + 9(2)
= 13.
Lord bless you today!
-
Applying the Product rule
f'(x) = (x^9)'*h(x) + (x^9)*h'(x)
f'(x) = 9x^8*h(x) + (x^9)*h'(x)
Now just evaluate in x = -1
f'(-1) = 9*(-1)^8*h(1) + ((-1)^9*h'(-1)
f'(-1) = 9*1*2 + (-1)*5
f'(-1) = 18 - 5
f'(-1) = 13
f'(x) = (x^9)'*h(x) + (x^9)*h'(x)
f'(x) = 9x^8*h(x) + (x^9)*h'(x)
Now just evaluate in x = -1
f'(-1) = 9*(-1)^8*h(1) + ((-1)^9*h'(-1)
f'(-1) = 9*1*2 + (-1)*5
f'(-1) = 18 - 5
f'(-1) = 13
-
f '(x) = x^9 * h '(x) + h(x) * (9x^8)
f '(-1) = -h '(-1) + h(-1) * 9 = -5 + 18 = 13
f '(-1) = -h '(-1) + h(-1) * 9 = -5 + 18 = 13