how do you do this..
approximate the zeros of the function to the nearest tenth
f(x)= x^2 + 5x +1
approximate the zeros of the function to the nearest tenth
f(x)= x^2 + 5x +1
-
Finding the zeroes means finding the roots of the function.
0 = x^2+5x+1
Quadratic Formula:
x = -b+-√(b^2-4ac) / 2a
In this problem: a=1, b=5, and c=1.
x = -(5)+-√((5)^2-4(1)(1)) / 2(1)
x = -5+-√(25-4) / 2
x = -5+-√21 / 2
Answer: The point ( (-5+√21)/2 , 0 ) and the point ( (-5-√21)/2 , 0 ).
_______________________________________…
EDIT: ...which to the nearest tenth is (-0.2 , 0) and (-4.8 , 0).
0 = x^2+5x+1
Quadratic Formula:
x = -b+-√(b^2-4ac) / 2a
In this problem: a=1, b=5, and c=1.
x = -(5)+-√((5)^2-4(1)(1)) / 2(1)
x = -5+-√(25-4) / 2
x = -5+-√21 / 2
Answer: The point ( (-5+√21)/2 , 0 ) and the point ( (-5-√21)/2 , 0 ).
_______________________________________…
EDIT: ...which to the nearest tenth is (-0.2 , 0) and (-4.8 , 0).