(x+3)/(x^2-x)
dy/dx = 1/(2x - 1)
is this correct?
can someone check my method on a statistics question at this link, no one will answer it:(
http://uk.answers.yahoo.com/question/index;_ylt=AmKm4tu9mDV7Mp49U3.P7tYgBgx.;_ylv=3?qid=20120429164003AAXNKHs
dy/dx = 1/(2x - 1)
is this correct?
can someone check my method on a statistics question at this link, no one will answer it:(
http://uk.answers.yahoo.com/question/index;_ylt=AmKm4tu9mDV7Mp49U3.P7tYgBgx.;_ylv=3?qid=20120429164003AAXNKHs
-
y = (x+3)/(x^2-x)
Use d(u/v) = [vdu-udv]/v^2
[(x^2-x) - (x+3)(2x-1)]/[(x^2-x)^2]=
[x^2-x-2x^2-5x+3]/(x^2-x)^2=
-[x^2+6x-3]/[x^2(x-1)^2]
Use d(u/v) = [vdu-udv]/v^2
[(x^2-x) - (x+3)(2x-1)]/[(x^2-x)^2]=
[x^2-x-2x^2-5x+3]/(x^2-x)^2=
-[x^2+6x-3]/[x^2(x-1)^2]