Solve for x in terms of b.
log_b (1 - 3x) = 3 + logsub_b (x)
log_b (1 - 3x) = 3 + logsub_b (x)
-
log_b (1 - 3x) = 3 + log_b (x)
log_b (1 - 3x) - log_b (x) = 3
log_b (1 - 3x)/x = 3 <--- log m - log n = log (m/n)
b^3 = ( 1 - 3x ) / x <--- express in exponential form
b^3 = 1/x - 3 <--- separate into 2 fractions
b^3 + 3 = 1/x <--- isolate the x
1/(b^3 + 3) = x <--- take the reciprocal of both sides
x = 1/(b^3 + 3)
log_b (1 - 3x) - log_b (x) = 3
log_b (1 - 3x)/x = 3 <--- log m - log n = log (m/n)
b^3 = ( 1 - 3x ) / x <--- express in exponential form
b^3 = 1/x - 3 <--- separate into 2 fractions
b^3 + 3 = 1/x <--- isolate the x
1/(b^3 + 3) = x <--- take the reciprocal of both sides
x = 1/(b^3 + 3)
-
log_b(1-3x)-log_b(x)=3
log_b((1-3x)/x))=3
(1-3x)/x = b^3
1/x-3 = b^3 for x not equal to zero.
1/x =b^3+3
x= 1/(b^3+3)
log_b((1-3x)/x))=3
(1-3x)/x = b^3
1/x-3 = b^3 for x not equal to zero.
1/x =b^3+3
x= 1/(b^3+3)
-
logb (1 - 3x) = 3 + logb (x)
logb (1 - 3x) = logb (b^3) + logb (x)
logb (1 - 3x) = logb (xb^3)
1 - 3x = xb^3
xb^3 + 3x = 1
x(b^3 + 3) = 1
x = 1 / (b^3 + 3)
logb (1 - 3x) = logb (b^3) + logb (x)
logb (1 - 3x) = logb (xb^3)
1 - 3x = xb^3
xb^3 + 3x = 1
x(b^3 + 3) = 1
x = 1 / (b^3 + 3)