Solve for x in terms of a.
logsub2 (x + a) - logsub2 (x - a) = 1
logsub2 (x + a) - logsub2 (x - a) = 1
-
log (base 2) (x+a) - log (base 2) (x -a) = 1
log (base 2) [ (x +a ) / ( x-a) ] = 1
(x +a) /(x - a) = 2^1
x + a = 2(x - a)
x + a = 2x - 2a
x - 2x = -2a - a
-x = -3a
x = 3a
log (base 2) [ (x +a ) / ( x-a) ] = 1
(x +a) /(x - a) = 2^1
x + a = 2(x - a)
x + a = 2x - 2a
x - 2x = -2a - a
-x = -3a
x = 3a
-
log(m) - log(n) = log(m/n)
logsub2 (x + a) - logsub2 (x - a) = 1 = logsub2 [ (x + a)/(x - a) ] = 1
2^1 = 2 = (x + a)/(x - a)
2x - 2a = x + a
x = 3a
logsub2 (x + a) - logsub2 (x - a) = 1 = logsub2 [ (x + a)/(x - a) ] = 1
2^1 = 2 = (x + a)/(x - a)
2x - 2a = x + a
x = 3a
-
log2 (x + a) - log2 (x - a) = 1
log2 ((x + a) / (x - a)) = log2 (2)
(x + a) / (x - a) = 2
x + a = 2x - 2a
x = 3a
log2 ((x + a) / (x - a)) = log2 (2)
(x + a) / (x - a) = 2
x + a = 2x - 2a
x = 3a