Find the vertex of the parabola y = 6x 2 + 3x + 1 by completing the square.
Favorites|Homepage
Subscriptions | sitemap
HOME > > Find the vertex of the parabola y = 6x 2 + 3x + 1 by completing the square.

Find the vertex of the parabola y = 6x 2 + 3x + 1 by completing the square.

[From: ] [author: ] [Date: 12-04-14] [Hit: ]
......
HELP!

-
——————————————————————————————————————

y = 6x² + 3x + 1
y = 6[x² + ½ x] + 1
y = 6[x² + ½ x + (¼)² - (¼)²] + 1
y = 6[(x + ¼)² - (¼)²] + 1
y = 6(x + ¼)² - 6(¼)² + 1
y = 6(x + ¼)² - 6(¹∕₁₆) + 1
y = 6(x + ¼)² - ⅜ + 1
y = 6(x + ¼)² + ⅝

        ANSWER
         V(-¼,⅝)

——————————————————————————————————————

-
Here are the steps for completing the square.
y = 6x² + 3x + 1

factor out the leading coefficient
y = 6(x² + ½x) + 1

coefficient of the x term: ½
divide coefficient in half: ¼
square it: (¼)²
use the result to complete the square, keeping the equation balanced:
y = 6(x² + ½x + (¼)²) - 6(¼)² + 1
y = 6(x + ¼)² - ⅜ + 1
y = 6(x + ¼)² + 5/8

vertex of parabola: (-¼, 5/8)
1
keywords: of,completing,vertex,square,parabola,Find,by,the,Find the vertex of the parabola y = 6x 2 + 3x + 1 by completing the square.
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .