Laplace transform of cos(bt)
Favorites|Homepage
Subscriptions | sitemap
HOME > > Laplace transform of cos(bt)

Laplace transform of cos(bt)

[From: ] [author: ] [Date: 12-03-05] [Hit: ]
............
recall that, cosbt = (e^ibt + e^-ibt)/2

-
Since L {e^(at)} = 1/(s - a),

L {cos(bt)} = L {(1/2)(e^(ibt) + e^(-ibt))}
................= (1/2) [L {(e^(ibt)} + L {e^(-ibt)}]
................= (1/2) [1/(s - bi) + 1/(s - (-bi))]
................= (1/2) * 2s/[(s - bi)(s + bi)]
................= s/(s^2 + b^2).

I hope this helps!
1
keywords: cos,Laplace,bt,of,transform,Laplace transform of cos(bt)
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .