Complex number:solve --> i^5(8i^2 - 7i^3)
Favorites|Homepage
Subscriptions | sitemap
HOME > > Complex number:solve --> i^5(8i^2 - 7i^3)

Complex number:solve --> i^5(8i^2 - 7i^3)

[From: ] [author: ] [Date: 12-03-02] [Hit: ]
i^7=(i*i)*(i*i)*(i*i)*i=-1*-1*-1*i=-i.Remember - since i=sqrt(-1),......
answer
-7 - 8i

-
I guess you are asking how to get that answer?
First distribute, giving this result. 8i^7-7i^8
Then all powers of i can be reduced to either 1, -1, i, or, -i.
i^7=(i*i)*(i*i)*(i*i)*i=-1*-1*-1*i=-i. So that is how you get the -8i
then in the same way you find that i^8 =-i
Remember - since i=sqrt(-1), i*i=-1

-
i^5(8i^2 - 7i^3)

i^5*(8 i^2) - i^5 * (7i^3)

8 i ^ 7 - 7 i ^ 8

since i^2 = -1

8i^7 - 7 i^8 = - 8 i - 7

-
i^5(8i^2 - 7i^3)
= 8 i^7 - 7 i^8
= 8 ( -1^3 i ) - 7( -1 ^4 )
= 8 ( -1 i) - 7 ( 1 )
= -8i - 7

*rem i^2 = -1

-
i^5(8i^2 - 7i^3)
= 8i^7 - 7i^8
= -7 - 8i
1
keywords: solve,Complex,number,gt,Complex number:solve --> i^5(8i^2 - 7i^3)
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .