answer
-7 - 8i
-7 - 8i
-
I guess you are asking how to get that answer?
First distribute, giving this result. 8i^7-7i^8
Then all powers of i can be reduced to either 1, -1, i, or, -i.
i^7=(i*i)*(i*i)*(i*i)*i=-1*-1*-1*i=-i. So that is how you get the -8i
then in the same way you find that i^8 =-i
Remember - since i=sqrt(-1), i*i=-1
First distribute, giving this result. 8i^7-7i^8
Then all powers of i can be reduced to either 1, -1, i, or, -i.
i^7=(i*i)*(i*i)*(i*i)*i=-1*-1*-1*i=-i. So that is how you get the -8i
then in the same way you find that i^8 =-i
Remember - since i=sqrt(-1), i*i=-1
-
i^5(8i^2 - 7i^3)
i^5*(8 i^2) - i^5 * (7i^3)
8 i ^ 7 - 7 i ^ 8
since i^2 = -1
8i^7 - 7 i^8 = - 8 i - 7
i^5*(8 i^2) - i^5 * (7i^3)
8 i ^ 7 - 7 i ^ 8
since i^2 = -1
8i^7 - 7 i^8 = - 8 i - 7
-
i^5(8i^2 - 7i^3)
= 8 i^7 - 7 i^8
= 8 ( -1^3 i ) - 7( -1 ^4 )
= 8 ( -1 i) - 7 ( 1 )
= -8i - 7
*rem i^2 = -1
= 8 i^7 - 7 i^8
= 8 ( -1^3 i ) - 7( -1 ^4 )
= 8 ( -1 i) - 7 ( 1 )
= -8i - 7
*rem i^2 = -1
-
i^5(8i^2 - 7i^3)
= 8i^7 - 7i^8
= -7 - 8i
= 8i^7 - 7i^8
= -7 - 8i