Calculus help! Natural log functions
Favorites|Homepage
Subscriptions | sitemap
HOME > > Calculus help! Natural log functions

Calculus help! Natural log functions

[From: ] [author: ] [Date: 12-02-27] [Hit: ]
regardless of b, the absolute minimum of f(x) = bxln(bx) is -1/e.......
Let f be the function defined by f(x) = 2xln(2x)
a. What is the domain of f(x)? (I got (0,infinity))
b. Find the absolute minimum value of f.
c. What is the range of f?
d. Consider the family of functions defined by y = bxlnbx, where b is a nonzero constant. Show that the absolute minimum value of bxlnbx is the same for all nonzero values of b.

thanks!!

-
a.
2x > 0, x > 0

b.
f'(x) = 2ln(2x) + 2
0 = 2ln(2x) + 2
0 = ln(2x) + 1
ln(2x) = -1
2x = 1/e
x = 1/(2e)
f(1/(2e)) = (1/e)ln(1/e) = -1/e
So the minimum of f is -1/e.

c.
f ≥ -1/e

d.
f(x) = bxln(bx)
f'(x) = bln(bx) + b
0 = bln(bx) + b
0 = ln(bx) + 1
ln(bx) = -1
bx = 1/e
x = 1/(be)
f(1/(be)) = (1/e)ln(1/e) = -1/e
So, regardless of b, the absolute minimum of f(x) = bxln(bx) is -1/e.
1
keywords: Natural,help,log,functions,Calculus,Calculus help! Natural log functions
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .