∫ tan²Θ sec^4(Θ) dΘ
∫ tan²Θsec²Θsec²Θ dΘ
∫ tan²Θ(1 + tan²Θ)sec²Θ dΘ
let u = tanΘ
du = sec²Θ dΘ
∫ u²(1 + u²) du
∫ (u² + u^4) du
1/3u³ + 1/5u^5 + C
1/3tan³Θ + 1/5tan^5(Θ) + C
∫ tan²Θsec²Θsec²Θ dΘ
∫ tan²Θ(1 + tan²Θ)sec²Θ dΘ
let u = tanΘ
du = sec²Θ dΘ
∫ u²(1 + u²) du
∫ (u² + u^4) du
1/3u³ + 1/5u^5 + C
1/3tan³Θ + 1/5tan^5(Θ) + C
-
It's a u- substitution problem
∫tan^2 (θ) sec^4 (θ) dθ
u= tan (θ)
du= sec^2 (θ) dθ
∫ u^2 (sec^2 (θ)) du
using your identities:
sin^2 (x) + cos^2 (x) = 1
sin^2 (x) / (cos^2 (x)) + cos^2 (x) / (cos^2 (x)) = 1 / (cos^2 (x))
tan^2 (x) + 1 = sec^2 (x)
getting back to the prob:
∫ u^2 (sec^2 (θ)) du
∫ u^2 (tan^2 (θ) + 1) du
remember : u = tan (θ)
and I'll hand this one back to you
hope that helped :)
∫tan^2 (θ) sec^4 (θ) dθ
u= tan (θ)
du= sec^2 (θ) dθ
∫ u^2 (sec^2 (θ)) du
using your identities:
sin^2 (x) + cos^2 (x) = 1
sin^2 (x) / (cos^2 (x)) + cos^2 (x) / (cos^2 (x)) = 1 / (cos^2 (x))
tan^2 (x) + 1 = sec^2 (x)
getting back to the prob:
∫ u^2 (sec^2 (θ)) du
∫ u^2 (tan^2 (θ) + 1) du
remember : u = tan (θ)
and I'll hand this one back to you
hope that helped :)
-
---
Visit the wolframalpha page given below and select the "show steps" button.
Visit the wolframalpha page given below and select the "show steps" button.
-
∫tan^2 (θ) sec^4 (θ) dθ =
∫tan^2 (θ) sec^2 (θ) d(tan (θ)) =
∫tan^2 (θ) (1 + tan^2 (θ)) d(tan (θ)) =
∫tan^2 (θ) d(tan (θ)) + ∫tan^4 (θ) d(tan (θ)) =
(1/3) tan^3 (θ) + (1/5) tan^5 (θ)+ C
Or use tan(θ) = u and sec^2 (θ) d(θ) = du
∫tan^2 (θ) sec^2 (θ) d(tan (θ)) =
∫tan^2 (θ) (1 + tan^2 (θ)) d(tan (θ)) =
∫tan^2 (θ) d(tan (θ)) + ∫tan^4 (θ) d(tan (θ)) =
(1/3) tan^3 (θ) + (1/5) tan^5 (θ)+ C
Or use tan(θ) = u and sec^2 (θ) d(θ) = du