∫tan^2 (θ) sec^4 (θ) dθ
Favorites|Homepage
Subscriptions | sitemap
HOME > > ∫tan^2 (θ) sec^4 (θ) dθ

∫tan^2 (θ) sec^4 (θ) dθ

[From: ] [author: ] [Date: 11-12-07] [Hit: ]
......
∫ tan²Θ sec^4(Θ) dΘ

∫ tan²Θsec²Θsec²Θ dΘ

∫ tan²Θ(1 + tan²Θ)sec²Θ dΘ

let u = tanΘ
du = sec²Θ dΘ

∫ u²(1 + u²) du
∫ (u² + u^4) du
1/3u³ + 1/5u^5 + C

1/3tan³Θ + 1/5tan^5(Θ) + C

-
It's a u- substitution problem

∫tan^2 (θ) sec^4 (θ) dθ

u= tan (θ)
du= sec^2 (θ) dθ

∫ u^2 (sec^2 (θ)) du



using your identities:

sin^2 (x) + cos^2 (x) = 1

sin^2 (x) / (cos^2 (x)) + cos^2 (x) / (cos^2 (x)) = 1 / (cos^2 (x))

tan^2 (x) + 1 = sec^2 (x)



getting back to the prob:

∫ u^2 (sec^2 (θ)) du

∫ u^2 (tan^2 (θ) + 1) du

remember : u = tan (θ)

and I'll hand this one back to you

hope that helped :)

-
---

Visit the wolframalpha page given below and select the "show steps" button.

-
∫tan^2 (θ) sec^4 (θ) dθ =
∫tan^2 (θ) sec^2 (θ) d(tan (θ)) =
∫tan^2 (θ) (1 + tan^2 (θ)) d(tan (θ)) =
∫tan^2 (θ) d(tan (θ)) + ∫tan^4 (θ) d(tan (θ)) =
(1/3) tan^3 (θ) + (1/5) tan^5 (θ)+ C

Or use tan(θ) = u and sec^2 (θ) d(θ) = du
1
keywords: tan,sec,theta,int,∫tan^2 (θ) sec^4 (θ) dθ
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .