∫(2x+3^)^2dx
second step is below:
=∫(4x^2+12x+9)dx <---- where does the '12x' come from? :ss
by '^2' i mean squared
second step is below:
=∫(4x^2+12x+9)dx <---- where does the '12x' come from? :ss
by '^2' i mean squared
-
its just that they've expanded the equation!
(a+b)² = (a² + 2ab + b²)
like here, (2x + 3)² = ( (2x)² + (2*2x*3) + (3)²)
= (4x² + 12x + 9)
∫ 4x² + 12x + 9 dx
= (4/3)x³ + 6x² + 9x + c (the c is because you dont have limits) (to integrate, you add 1 to the power of x and you divide by the power, that is, 4 divide by 3 and 12 divide by 2 gives you 6 )
(a+b)² = (a² + 2ab + b²)
like here, (2x + 3)² = ( (2x)² + (2*2x*3) + (3)²)
= (4x² + 12x + 9)
∫ 4x² + 12x + 9 dx
= (4/3)x³ + 6x² + 9x + c (the c is because you dont have limits) (to integrate, you add 1 to the power of x and you divide by the power, that is, 4 divide by 3 and 12 divide by 2 gives you 6 )
-
can u revisit your question please
-
it came from 2(2x)(3) = 12x