(1 + tanx)/(1+cotx) = (1 - tanx)/(cotx-1)
-
(1 + tanx)/(1+cotx)
= (1 + tanx) / (1 + 1/tanx)
= tanx (1 + tanx) / (tanx + 1)
= tanx
= 1/ cotx
= (1 -- tanx) / cotx(1 -- tanx)
= (1 - tanx) / (cotx -- 1)
= (1 + tanx) / (1 + 1/tanx)
= tanx (1 + tanx) / (tanx + 1)
= tanx
= 1/ cotx
= (1 -- tanx) / cotx(1 -- tanx)
= (1 - tanx) / (cotx -- 1)
-
Simplifying the LHS:
(cos(x) + sin(x))/cos(x) * sin(x)/(sin(x) + cos(x)) = tan(x)
Simplifying the RHS:
(1 - tan(x))/(cot(x) - 1) = (tan(x) - 1)/(1 - cot(x))
= (sin(x) - cos(x))/cos(x) * sin(x)/(sin(x) - cos(x))
= tan(x)
Hence both sides are equal.
(cos(x) + sin(x))/cos(x) * sin(x)/(sin(x) + cos(x)) = tan(x)
Simplifying the RHS:
(1 - tan(x))/(cot(x) - 1) = (tan(x) - 1)/(1 - cot(x))
= (sin(x) - cos(x))/cos(x) * sin(x)/(sin(x) - cos(x))
= tan(x)
Hence both sides are equal.
-
(1+tanx) / (1+cotx) = (1+sinx/cosx) / (1+cosx/sinx) = ((cosx+sinx) / cosx) / ((sinx+cosx) / sinx) = sinx / cosx = tanx
(1 - tanx) / (cotx-1) = (1-sinx/cosx) / (cosx/sinx-1) = ((cosx-sinx) / cosx) / ((cosx-sinx) / sinx) = sinx / cosx = tanx
Therefore (1 + tanx)/(1+cotx) = (1 - tanx)/(cotx-1)
(1 - tanx) / (cotx-1) = (1-sinx/cosx) / (cosx/sinx-1) = ((cosx-sinx) / cosx) / ((cosx-sinx) / sinx) = sinx / cosx = tanx
Therefore (1 + tanx)/(1+cotx) = (1 - tanx)/(cotx-1)