The formula:
1+r+r^2+...+r^n= (r^(n+1)-1) / (r-1)
is true for all real numbers r except r=1 and for all integers n >=0. Use this fact to solve this problem:
If n is an integer and n >= 1, find a formula for the following expression:
2^(n)-2^(n-1)+2^(n-2)-2^(n-3)+...+ -1^(n-1)*2 +(-1)^n
I am completely lost on this problem and need a detailed solution ASAP. Thanks!
1+r+r^2+...+r^n= (r^(n+1)-1) / (r-1)
is true for all real numbers r except r=1 and for all integers n >=0. Use this fact to solve this problem:
If n is an integer and n >= 1, find a formula for the following expression:
2^(n)-2^(n-1)+2^(n-2)-2^(n-3)+...+ -1^(n-1)*2 +(-1)^n
I am completely lost on this problem and need a detailed solution ASAP. Thanks!
-
Factor out 2ⁿ.
2ⁿ - 2^(n-1) + 2^(n-2) - .... + (-1)^(n-1)2 + (-1)ⁿ =
2ⁿ[1 - 2^(-1) + 2^(-2) - ... + (-1)^(n-1) 2^(1-n) + (-1)ⁿ 2^(-n)]=
2ⁿ[1 + (-1)/2 + (-1)²/2² + (-1)^3/2^3 + .... + (-1)^(n-1)/2^(n-1) + (-1)ⁿ/2ⁿ]
So r = -1/2.
Your sum is
2ⁿ((-1/2)^(n+1) - 1)/(-1/2 - 1) = (2ⁿ - 1)/3
2ⁿ - 2^(n-1) + 2^(n-2) - .... + (-1)^(n-1)2 + (-1)ⁿ =
2ⁿ[1 - 2^(-1) + 2^(-2) - ... + (-1)^(n-1) 2^(1-n) + (-1)ⁿ 2^(-n)]=
2ⁿ[1 + (-1)/2 + (-1)²/2² + (-1)^3/2^3 + .... + (-1)^(n-1)/2^(n-1) + (-1)ⁿ/2ⁿ]
So r = -1/2.
Your sum is
2ⁿ((-1/2)^(n+1) - 1)/(-1/2 - 1) = (2ⁿ - 1)/3
-
Your series is a GP with common ratio - 1/2, so the sum is
(( - 1/2 )^(n + 1 ) - 1) /(-(1/2) - 1) , which you can easily simplify.
(( - 1/2 )^(n + 1 ) - 1) /(-(1/2) - 1) , which you can easily simplify.