HELP ME PLEASE!! I don't know how to solve these 2 linear systems! Please show steps!!
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > HELP ME PLEASE!! I don't know how to solve these 2 linear systems! Please show steps!!

HELP ME PLEASE!! I don't know how to solve these 2 linear systems! Please show steps!!

[From: ] [author: ] [Date: 11-11-16] [Hit: ]
can you please help me & show steps??PLEASE HELP!!so you have5x-y=-3,-x= ( oh my very uneven number) -0.......
Hi!
I'm having trouble solving these two linear systems, can you please help me & show steps??

-6x - 9y = -4
5x - y = -3 <--- those two together are 1 problem

-6x - 2y = -5
4x + 6y = -1 <--- those two together are 1 problem


PLEASE HELP!!

-
for the first one you can use the method of substitution
so you have 5x-y=-3, you have to isolate the y so it would become
y=5x+3
after you've done that you place y=5x+3 in your first equation (substitute it for y)

-6x-9y=-4
-6x - 9(5x+3)= -4
-6x - 45x - 27 = -4
(now you try to isolate your x)

-51x= -4 + 27
-51x= 23
-x= ( oh my very uneven number) -0.45 (around)
x= 0.45

now you put x =0.45 in one of the original equations

5(0.45) - y = -3
(then you try to isolate your y)
2.25 +3 = y
y= 5.25
The final solution is (0.45, 5.25)

---------------------------------------

for the second set you use the elimination method, so you try to eliminate one of the variables completely from the equation
im going to times the first equation ( -6x-2y=-5) by 3
it would become
-18x-6y=-15 <--- see the y will be eliminated when i addition both equation together
+ 4x + 6y = -1
----------------------
-14x =-16
-x = -1.14 (around)
x = 1.14

then i put x= 1.14 in one of the original equations to get the value of y

4(1.14) + 6y = -1
16.56 + 6y = -1
6y = -1 - 16.56
6y = -17.56
y = -2.93 (around)

so the intersection point is (1.14, -2.93)
1
keywords: these,steps,know,Please,solve,show,039,systems,ME,linear,don,HELP,to,how,PLEASE,HELP ME PLEASE!! I don't know how to solve these 2 linear systems! Please show steps!!
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .